Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home >

Subject Code

```
-Any - V
```

Question Type

- Any - \mathbf{V}
marks
- Any - \mathbf{V}

Question Number

- Any - \mathbf{V}

Sub Number

- Any - \mathbf{V}

Apply

Examination: 2017 SUMMER

Que.No	Question/Problem	marks	Link
Q 5 c)	Question: A leather belt is required to transmit 7.5 kW from a pulley 1.2 m in diameter running at 250 rpm. The angle of contact is 1650 and the coefficient of friction between the belt and the pulley is 0.35 . If the safe working stress for the leather belt is $\mathbf{2} \mathbf{~ M P a}$, density of leather is $\mathbf{1 0 5 0}$ $\mathrm{kg} / \mathrm{m} 3$ and the thickness of belt is 10 mm , determine the width of belt, taking centrifugal tension into account. Answer: We know that velocity of the belt, $V=\frac{\pi \cdot d \cdot N}{60}=\frac{\pi \times 1.2 \times 250}{60}=15.71 \mathrm{~m} / \mathrm{s}$ and Power Tranemitted (P) $\begin{align*} & P=\left(T_{1}-T_{2}\right) V= \\ & 7.5 \times 10^{3}=\left(T_{1}-T_{2}\right) 15.71 \\ & \therefore \quad T_{1}-T_{2}=7500 / 15.71=477.4 \mathrm{~N} \tag{i} \end{align*}$ We know that $\begin{align*} \frac{T_{1}}{T_{2}}=e^{\mu \theta} \quad \therefore \frac{T_{1}}{T_{2}} & =e^{0.35 \times 165 \times \pi / 180} \\ \frac{T_{1}}{T_{2}} & =2.75 \tag{ii} \end{align*}$ from eqn (i) and (ii) $T_{1}=751.8 \mathrm{~N} \text {, and } T_{2}=274.4 \mathrm{~N}$ We know that mass of the belt per metre leyth, $\begin{aligned} m & =\text { Area } \times \text { lergth } \times \text { dossity }=b t l e \\ & =b \times 0.01 \times 1 \times 1050=10.5 \mathrm{bkg} \end{aligned}$ \therefore Centrifugal Tension, $T_{c}=m \cdot v^{2}=10.5 \mathrm{~b}(15.71)^{2}=2591.44 \mathrm{~b} \mathrm{~N}$ and Max. Tension in the belt, $\begin{aligned} T=\sigma \cdot b \cdot t & =2 \times 10^{6} \times b \times 0.01 \\ & =20000 \mathrm{~b} \mathrm{~N} \end{aligned}$ We know that, $\begin{aligned} & T=T_{1}+T_{c} \\ & \therefore 20000 b=751.8+2591.44 b \\ & \therefore 20000 b-2591.44 b=751.8 \\ & \therefore 17408.56 \mathrm{~b}=751.8 \\ & \therefore b= \frac{751.8}{17408.56} \quad \therefore b \end{aligned}=0.04319 \mathrm{~m} .$	8	view

Examination: 2016 SUMMER

Question:
A simple band brake shown in figure 2 is applied to a shaft carrying a flywheel of mass 250 kg and of radius of gyration 300 mm . The shaft speed is 200 rpm. The drum diameter is 200 mm and the coefficient of friction is 0.25 . The dimensions a and I are 100 mm and 280 mm respectively and the angle $\beta=1350$. Determine (i) the brake torque when a force of 120 N is applied at the lever end.
(ii) the number of turns of the flywheel before it comes to rest.
(iii) the time taken by flywheel to come to rest.

Fig. $\mathbf{2}$

Answer:

A simple band brake drum:

Q 6 b)

> Sol Given:-

$$
\begin{aligned}
& \mathbf{P}=120 \mathrm{~N} \\
& \mathrm{~N}=200 \mathrm{rpm} \\
& \mathrm{D}=200 \mathrm{~mm}=0.2 \mathrm{~m} \\
& \theta=225^{\circ}=3.92 \mathrm{rad} \\
& \mathrm{~K}=0.3 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{a}=100 \mathrm{~mm}=0.1 \mathrm{~m}
$$

$$
1=280 \mathrm{~mm}=0.28 \mathrm{~m}
$$

$$
\mu=0.25
$$

Ans:-

$$
\begin{aligned}
& \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \theta} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{(02 s)(3 s 2)} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=2.669 \\
& \mathrm{P}=\frac{\mathrm{T}_{2} \mathrm{XX}}{u}=120=\frac{\mathrm{T}_{2} \mathrm{X} 0.1}{0.28} \\
& \mathrm{~T}_{2}=336 \mathrm{~N} \\
& \mathrm{~T}_{1}=\mathrm{T}_{2} \times 2.669 \\
& \mathrm{~T}_{1}=336 \times 2.669 ; \mathrm{T}_{1}=896.784 \mathrm{~N} \\
& \ldots
\end{aligned}
$$

$T_{B}=\left(T_{1}-T_{2}\right) R_{-} \quad T_{B}=(896.784-336) 0.1$
$\mathrm{T}_{\mathrm{B}}=56 \mathrm{~N} . \mathrm{m}$ \qquad 01 mark

1) K. E. of Flywheel:-

$$
\begin{aligned}
& \frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \mathrm{X}\left(\mathrm{mk}^{2}\right)\left(\frac{2 \Pi \mathrm{~N}}{60}\right)^{2} \\
& =\frac{1}{2} \mathrm{X}\left(250 \times 0.3^{2}\right)\left(\frac{2 \mathrm{X} \Pi \times 200}{60}\right)^{2}
\end{aligned}
$$

$$
\text { Let } \mathrm{n}=\text { Number of revolution before it comes to rest }
$$

$$
\text { Work done }=T_{6} \times \theta=T_{6} \times 2 \times \Pi X n
$$

$=56.07 \times 2 \times \Pi \mathrm{Xn}$
$=(352.298 \mathrm{Xn}) \mathrm{N} . \mathrm{m}$ \qquad
Work done $=$ change in K . E .
$\mathrm{n}=\frac{4934.80}{352.298} \quad ; \mathrm{n}=14.007$ \qquad

Que.No	Question/Problem	marks	Link
	Question: A conical pivot with angle of cone as 1000 , supports a load of 18 kN . The external radius is $\mathbf{2 . 5}$ times the internal radius. The shaft rotates at 150 rpm . If the intensity of pressure is to be $300 \mathrm{kN} / \mathrm{m} 2$ and coefficient of friction as 0.05 , what is the power lost in working against the friction? Answer:		
Q 6 c)	Given data, Power Lost $=\mathbf{3 . 8 3 7} \mathbf{K W}$. \qquad 2 marks	8	view

Examination: 2016 WINTER

Question:
In a slider crank mechanism the length of crank and connecting rod are 100 mm and 40 mm respectively. The crank rotates uniformly at 600 rpm clockwise. Then crank has turned through 45° from I.D.C. Find by analytical method. (i) Velocity and acceleration of slider (ii) Angular velocity and angular acceleration of connecting rod.

Answer:

Radius of crank , $r=100 \mathrm{~mm}=0.1 \mathrm{~m}$ speed. $\mathrm{N}=600 \mathrm{rpm}, \omega=2 \pi \mathrm{~N} / 60=62.83 \mathrm{rad} / \mathrm{sec}$ Length of connecting rod, $\mathrm{l}=400 \mathrm{~mm}=0.4 \mathrm{~m}$ (40 mm is printing mistake)

Obliquity ratio, $n=1 / r=400 / 100=4$, Crank angle,$\theta=45^{\circ}$
Q 5 a) Velocity of slider $\mathrm{Vp}=\omega \mathrm{r}\left(\sin \theta+\frac{\sin 2 \theta}{2 n}\right)=5.225 \mathrm{~m} / \mathrm{s}$
Acceleration of slider $\mathrm{fp}=\omega^{2} \mathrm{r}\left(\cos \theta+\frac{\cos 2 \theta}{n}\right)=279.15 \mathrm{~m} / \mathrm{s}^{2}$
Angular velocity of connecting rod $\omega_{\text {pc }}=(\omega \cos \theta) / n=11.107 \mathrm{rad} / \mathrm{sec}$
Angular acceleration of connecting rod $\alpha_{\mathrm{pc}}=\left(-\omega^{2} \sin \theta\right) / \mathrm{n}=-697.89 \mathrm{rad} / \mathrm{sec}^{2}$
[Note- If student has taken $I=40$, (due to printing mistake in QP) which is practically not possible, but values of answers in that case will be $V p=12.29 \mathrm{~m} / \mathrm{s} ; \mathrm{fp}=\mathbf{2 7 9 . 1 5 \mathrm { m } / \mathrm { s } ^ { 2 } ; \omega _ { p c } = 1 1 1 . 0 7}$ $\mathrm{rad} / \mathrm{sec} ; \alpha_{p c}=6978.86 \mathrm{rad} / \mathrm{s}^{2}$, which may be acceptable.]

Question:

In a band and block brake shown in Fig. No. 1 has 14 blocks.
Each block subtends an angle of 16°, and $\mu=0.3$. Tension on tight side is T_{1} and that on slack side is T_{2} when force of 300 N is applied at the end of lever, find braking torque and direction of rotation of drum required.

Fig. No. 1

Answer:

Band and block brake
No. of blocks $n=14 ; \theta=16^{\circ} ; \mu=0.3$ braking force $=300 \mathrm{~N}$
$\frac{T n}{T o}=\left[\frac{1+\mu \tan \frac{\theta}{2}}{1-\mu \tan \frac{\theta}{2}}{ }^{n}=3.26\right.$
... 4 M
To $\times 10=300 \times 60$; $\mathrm{To}=1800 \mathrm{~N} ; \mathrm{T}=1800 \times 3.26=5868 \mathrm{~N}$ Let $\mathrm{r}_{\mathrm{b}}=$ radius of brake drum (Not given). If we consider it as 10 cm ,
$\mathrm{r}_{\mathrm{b}}=(5868-1800) \times 0.1=406.8 \mathrm{~N} \mathrm{~m}$

Examination: 2015 SUMMER

Question:
In reciprocating engine the crank is $\mathbf{2 5 0} \mathbf{~ m m}$ long and connecting rod is 1000 mm long. The crank rotate at 150 rpm. Find velocity and acceleration of piston and angular velocity and angular acceleration of connecting rod when the crank makes an angle of 30° to IDC. Use analytical method.

Answer:

Solution of problem on Reciprocating Engine :

$$
\begin{aligned}
& \text { Given : } \mathrm{r}=250 \mathrm{~mm}=0.25 \mathrm{~m}, \mathrm{I}=1000 \mathrm{~mm}=1 \mathrm{~m}, \quad \theta=30^{\circ} ; N=150 \mathrm{rpm} \\
& \omega=\pi \times 150 / 60=7.85 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

1. Velocity of piston

We know that ratio of the length of connecting rod and crank,

$$
n=l / r=1 / 0.25=4
$$

Q 5 a)
\therefore Velocity of the slider,

$$
\begin{aligned}
v_{\mathrm{P}} & =\omega r\left(\sin \theta+\frac{\sin 2 \theta}{2 n}\right)=7.85 \times 0.25\left(\sin 30+\frac{\sin 60^{\circ}}{2 \times 4}\right) \mathrm{m} / \mathrm{s} \\
& =1.19 \mathrm{~m} / \mathrm{s} \text { Ans. }
\end{aligned}
$$

and acceleration of the slider.

$$
\begin{aligned}
a_{\mathrm{p}} & =\omega^{2} \cdot r\left(\cos \theta+\frac{\cos 2 \theta}{n}\right)=(7.85)^{2} \times 0.25\left(\cos 30^{\circ}+\frac{\cos 60^{\circ}}{4}\right) \mathrm{m} / \mathrm{s}^{2} \\
& =15.27 \mathrm{~m} / \mathrm{s}^{2} \text { Ans. }
\end{aligned}
$$

2. Angular velocity \& Angular acceleration of Con Rod

We know that angular velocity of the connecting rod,

$$
\omega_{\mathrm{PC}}=\frac{\omega \cos \theta}{n}=\frac{7.85 \times \cos 30^{\circ}}{4}=1.67 \mathrm{rad} / \mathrm{s} \text { Ans. }
$$

and angular acceleration of the connecting rod,

$$
\alpha_{\mathrm{PC}}=\frac{\omega^{2} \sin \theta}{n}=\frac{(7.85)^{2} \times \sin 30^{\circ}}{4}=7.7 \mathrm{rad} / \mathrm{s}^{2} \mathrm{Ans}
$$

Question:
A belt is required to transmit 10 kW from a motor running at 600 rpm. The belt is $12 \mathbf{m m}$ thick and has a mass density $0.001 \mathrm{gm} / \mathrm{mm} 3$. Safe stress in the belt is not to exceed $2.5 \mathrm{~N} / \mathrm{mm} 2$, diameter of the driving pulley is $\mathbf{2 5 0} \mathbf{~ m m}$ whereas the speed of the driven pulley is 200 rpm. The two shafts are 1.25 m apart. The coefficient of friction is 0.25 , determine
(1) Angle of contact at driving pulley
(2) The width of the belt

Answer:

```
\(P=10 \times 10^{3} \mathrm{~W}, N_{1}=600 \mathrm{rpm}, d_{l}=250 \mathrm{~mm}=0.25 \mathrm{~m}\)
\(\mu=0.25, x=1.25 \mathrm{~m}, \rho=0.001 \mathrm{gm} / \mathrm{mm}^{3}\)
\(6=2.5 \mathrm{~N} / \mathrm{mm}^{2} . \quad N_{2}=200 \mathrm{rpm}\)
            \(\frac{N_{1}}{N_{2}}=\frac{d_{2}}{d_{1}} \quad \therefore d_{2}=0.75 \mathrm{~m}\)
We have,
                    \(\frac{r_{2}-r_{1}}{x}=\frac{0.375-0.125}{1.25}\)
                    \(\alpha=11.53^{\circ}\)
                    \(\therefore 2 \alpha=23.07^{\circ}\)
\(\therefore\) Angle of lap \(\theta=180-2 \alpha\)
                                    \(=156.9^{\circ}\)
                                    \(=2.73 \mathrm{rad}\)
velocily \(v=\frac{\pi d_{1} N_{1}}{60}=7.85 \mathrm{~m} / \mathrm{sec}\)
    Power \(P=\left(\tau_{1}-\tau_{2}\right) \cdot v\)
\(\therefore T_{1}-T_{2}=1273.90 \ldots(T)\)
Also, \(\frac{T_{1}}{T_{2}}=e^{\mu \theta}=e^{0.25 \times 2.73}=1.97 . .-\) (2)
from eqn (1) \& (2) \(T_{1}=1313.3 \mathrm{~N}\) \&
                                    \(T_{2}=667 \mathrm{~N}\)
Now, \(\quad T_{1}=6 \times b \times t=2.5 \times b \times 12\)
            \(\therefore b=43.77 \mathrm{~mm}\)
Note:- If prob is solved considering \(m\) o \(T_{c}\),
        give fuls credit
```

Q 5 c)

Question:
A simple band brake is operated by lever 40 cm long. The brake drum diameter is 40 cm and brake band embrance $5 / 8$ of its circumference. One end of band is attached to a fulcrum of lever while other end attached to pin 8 cm from fulcrum. The coefficient of friction 0.25 . The effort applied at the end of lever is 500 N . Find braking torque applied if drum rotates anticlockwise and acts downwards.
Answer:

$$
\begin{aligned}
& d=0.4 \mathrm{~m}, r=0.2 \mathrm{~m}, l=0.4 \mathrm{~m}, \mu=0.25 \\
& \theta=\frac{5}{8} \times 360^{\circ}=225^{\circ}=3.92 \mathrm{rad}, b=0.08 \mathrm{~m} . \\
& \text { we have, } \\
& \quad \frac{\tau_{1}}{\tau_{2}}=e^{\mu \theta}=e^{0.25 \times 3.92}=2.66 \ldots . .0
\end{aligned}
$$

Braking Terque

$$
T_{B}=\left(T_{1}-T_{2}\right) \times 2
$$

Taking moments about

$$
P \times l=T_{2} \times b
$$

$$
500 \times 0.4=T_{2} \times 0.08
$$

$$
\therefore T_{2}=2500 \mathrm{~N}
$$

$$
\& T_{1}=6650 \mathrm{~N}
$$

so, $T_{B}=(6650-2500) \times 0.2$
$=830 \mathrm{~N}-\mathrm{m}$

Question:

An engine of a car has a single plate clutch developed maximum torque $147 \mathrm{~N}-\mathrm{m}$. External diameter of clutch plate is 1.2 times its internal diameter. Determine the dimension of clutch plate and axial force provided by the spring. The maximum pressure intensity of the clutch facing $98 \mathrm{kN} / \mathrm{m} 2$ and coefficient of friction is 0.3 . Assume uniform wear condition.

Answer:

$$
\begin{aligned}
& \text { Max. Terque } T=147 \mathrm{~N}-m, n=2 \\
& d_{i}=1.2 d_{2}, \mu=0.3, P_{\max }=98 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\
& \text { uniform wear candition } \\
& \text { mean rad. } \begin{aligned}
R & =\frac{r_{1}+r_{2}}{2}=\frac{1.2 r_{2}+r_{2}}{2} \\
& =1.1 r_{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& T=n \mu w R=2 \times 0.3 \times w \times 11 r_{2} \\
& \therefore w=222.7 r_{2} \cdots \cdots(1) \\
& \text { Also, } p \cdot r_{2}=c \quad \therefore c=98 \times 10^{3} r_{2} \ldots(2) \\
& \text { But } w=2 \pi c\left(r_{1}-r_{2}\right) \\
& 222.7 r_{2}=2 \pi \times 98 \times 10^{3} r_{2}\left(1.2 r_{2}-r_{2}\right) \\
& 222.7=123088 r_{2} \\
& \therefore r_{2}=1.8 \mathrm{~mm} \\
& a r_{1}=1.2 \times 1.8=2.1 \mathrm{~mm} \\
& w=222.7 \times 1.8 \times 10^{8} \\
& =0.40 \mathrm{~N}
\end{aligned}
$$

(

Question:
Two parallel shafts whose centre line are 4.8 m apart, are connected by open belt drive. The diameter of larger pulley is $\mathbf{1 . 5} \mathbf{~ m}$ and that of smaller pulley $1 \mathbf{m}$. The initial tension in the belt when stationary is 3 $\mathbf{k N}$. The mass of the belt is $1.5 \mathrm{~kg} / \mathrm{m}$ length. The coefficient of friction between the belt and pulley is 0.3 Taking centrifugal tension into account, calculate the power transmitted when the smaller pulley rotates at 400 rpm.
Answer:

$$
\begin{aligned}
& \text { We know that velocity of the belt, } \\
& \qquad v=\frac{\pi d_{2} \cdot N_{2}}{60}=\frac{\pi \times 1 \times 400}{60}=21 \mathrm{~m} / \mathrm{s} \\
& \text { and centrifugal tension, } \quad \begin{aligned}
T_{\mathrm{C}} & =m \cdot v^{2}=1.5(21)^{2}=661.5 \mathrm{~N} \\
T_{1} & =\text { Tension in the tight side, and } \\
T_{2} & =\text { Tension in the slack side. }
\end{aligned} \\
& \text { We know that initial tension }\left(T_{0}\right) . \\
& 3000=\frac{T_{1}+T_{2}+2 T_{\mathrm{C}}}{2}=\frac{T_{1}+T_{2}+2 \times 661.5}{2} \\
& \therefore \quad T_{1}+T_{2}=3000 \times 2-2 \times 661.5=4677 \mathrm{~N} \\
& \text { For an open belt drive, }
\end{aligned}
$$

$$
\sin \alpha=\frac{1-\eta_{2}}{x}=\frac{d_{1}-d_{2}}{2 x}=\frac{1.5-1}{2 \times 4.8}=0.0521 \text { or } \alpha=3^{\circ}
$$

\therefore Angle of lap on the smaller pulley,
$\theta=180^{\circ}-2 \alpha=180^{\circ}-2 \times 3^{\circ}=174^{\circ}$
$=174^{\circ} \times \pi / 180=3.04 \mathrm{rad}$

We know that
-(Taking antilog of 0.3965)
From equations (i) and (ii),

$$
T_{1}=3341 \mathrm{~N} ; \text { and } T_{2}=1336 \mathrm{~N}
$$

$\therefore \quad$ Power transmitted,

$$
P=\left(T_{1}-T_{2}\right) v=(3341-1336) 21=42100 \mathrm{~W}=42.1 \mathrm{~kW} \text { Ans. }
$$

Question:

In a simple band brake, the band acts on the 3/4th of circumference of a drum of 450 mm diameter which is keyed to the shaft. The band brake provides a braking torque of $\mathbf{2 2 5} \mathbf{N . m}$. One end of the band is attached to a fulcrum pin of the lever and the other end to a pin 100 mm from the fulcrum. It the operating force is applied at 500 mm from the fulcrum and the coefficient of friction is 0.25 , find the operating force when the drum rotates in the
(i) anticlockwise direction and
ii) clockwise direction

Answer:

$$
\begin{aligned}
& \text { We know that braking torque }\left(T_{\mathrm{B}}\right) \text {, } \\
& \qquad 225=\left(T_{1}-T_{2}\right) r=\left(T_{1}-T_{2}\right) 0.225 \\
& \therefore \quad T_{1}-T_{2}=225 / 0.225=1000 \mathrm{~N} \\
& \text { From equations (i) and (ii), we have } \\
& \qquad T_{1}=1444 \mathrm{~N} \text {; and } T_{2}=444 \mathrm{~N}
\end{aligned}
$$

Now taking moments about the fulcrum O, we have

$$
P \times l=T_{2} \cdot b \quad \text { or } \quad P \times 0.5=444 \times 0.1=44.4
$$

$$
\therefore \quad P=44.4 / 0.5=88.8 \mathrm{~N} \text { Ans. }
$$

(b) Operating force when drum rotates in clockvise direction

When the drum rotates in clockwise direction, as shown in Fig. (a), then taking moments about the fulcrum O, we have

$$
\begin{aligned}
P \times l & =T_{1} \cdot b \quad \text { or } \quad P \times 0.5=1444 \times 0.1=144.4 \\
P & =144.4 / 0.5=288.8 \mathrm{~N} \text { Ans } .
\end{aligned}
$$

view

$$
\begin{align*}
& 2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.3 \times 3.04=0.912 \\
& \log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.912}{2.3}=0.3965 \text { or } \frac{T_{1}}{T_{2}}=2.5 \tag{it}
\end{align*}
$$

Que.No	Question/Problem	marks	Link
	Question: A single plate clutch with both sides effective has outer and inner diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the contact surface is not to exceed 0.1 $\mathrm{N} / \mathrm{mm} 2$. If the coefficient of friction is 0.3 , determine the power transmitted by a clutch at a speed of $\mathbf{2 5 0 0}$ rpm. Assume uniform condition. Answer: Single Plate Clutch:		
Q 6 c)	Since the intensity of pressure (p) is maximum at the inner radius $\left(r_{2}\right)$, therefore for uniform wear, $p r_{2}=C \text { or } C=0.1 \times 100=10 \mathrm{~N} / \mathrm{mm}$ We know that the axial thrust, $W=2 \pi C\left(r_{1}-r_{2}\right)=2 \pi \times 10(150-100)=3142 \mathrm{~N}$ and mean radius of the friction surfaces for uniform wear, $R=\frac{r_{1}+r_{2}}{2}=\frac{150+100}{2}=125 \mathrm{~mm}=0.125 \mathrm{~m}$ We know that torque transmitted, $T=n \cdot \mu \cdot W \cdot R=2 \times 0.3 \times 3142 \times 0.125=235.65 \mathrm{~N}-\mathrm{m}$...($\because n=2$, for both sides of plate effective) \therefore Power transmitted by a clutch, $P=T . \omega=235.65 \times 261.8=61693 \mathrm{~W}=61.693 \mathrm{~kW} \text { Ans. }$	8	view

