Published on *Mechanical Engg Simple Notes*, Solved problems and Videos (<u>https://mechdiploma.com</u>)

<u>Home</u> >

Subject Code - Any - ▼ Question Type - Any - ▼ marks - Any - ▼ Question Number - Any - ▼ Sub Number - Any - ▼ Apply

Examination: 2017 SUMMER

Que.No	Question/Problem	marks	Link
	Question: A leather belt is required to transmit 7.5 kW from a pulley 1.2 m in diameter running at 250 rpm. The angle of contact is 1650 and the co- efficient of friction between the belt and the pulley is 0.35. If the safe working stress for the leather belt is 2 MPa, density of leather is 1050 kg/m3 and the thickness of belt is 10 mm, determine the width of belt, taking centrifugal tension into account. Answer:		
	We know that velocity of the belt,		
	V= TT.d.N = TI X1.2×250 = 15.71 m/3		
	and Power Transmitted (P)		
	$P = (T_1 - T_2) \vee \pi$		
	$7.5 \times 10^3 = (T_1 - T_2) 15.71$		
	$T_1 - T_2 = 7500 / 15.71 = 477.4 N(i)$		
	We know that		
Q 5 c)	$\frac{T_{1}}{T_{2}} = e^{UO} \cdot \frac{T_{1}}{T_{2}} = e^{0.35 \times 165 \times TT/180}$ $\frac{T_{1}}{T_{2}} = 2.75 $ (ii)	8	<u>view</u>
	from ean(i) and (iii)		
	T 751.8 N; and T2=274.4 N		
	We know that mass of the belt per meter length,		
	m= Area x leigth x dousity = btit		
	= bx0.01×1×1050 = 10.5 b kg		
	." Centrifugal Tension,		
	tc=m.V2= 105 b (15.71)2= 2591.44 b N		
	and Max. Tension in the belt,		
	T- + ht = 2×10 × 6×0.0]		
	We know that, = 20000 6 N		
	$T = T_1 + T_2$		
	· 200506 = 751.8 + 2591.44 b		
	1 200006-2591.446=751.8		
	· 17408.56 b = 751.8		
	$b = \frac{751.8}{17408.56}$: $b = 0.04319$ m		
	17408.56 = 43.19 mm.		

Examination: 2016 SUMMER

Que.No	Question/Problem	marks	Link
	Question: Two parallel shafts, connected by a crossed belt, are provided with pulleys 480 mm and 640 mm in diameters. The distance between the centre lines of the shafts is 3 m. Find by how much the length of the belt should be changed if it is desired to alter the direction of rotation of the driven shaft. Answer:		
	$\begin{array}{ll} D_1 = 480mm = 0.48m & R_1 = 0.24m \\ D_2 = 640mm = 0.64m & R_2 = 0.32m \\ x = 3m \end{array}$		
	Crossed belt=		
	$L = \Pi(r_1 + r_2) + 2x + \frac{(r_1 + r_2)^2}{1} - \dots - 1 \text{ mark}$		
Q 5 c)	$L = \Pi(0.24 + 0.32) + 2(3) + \frac{(0.24 + 0.32)^2}{3}$	8	view
	L = 7.863mm2 marks		
	Now Rotation Alter(open belt)		
	$L = \Pi(r_1 + r_2) + 2x + \frac{(r_1 - r_2)^2}{1} - \dots - 1 \text{ mark}$		
	$L = \Pi(t_1 + t_2) + 2x + \frac{1}{1}$ $L = \Pi(0.24 + 0.32) + 2(3) + \frac{(0.24 - 0.32)^2}{3}$		
	3 L = 7.76mm2 marks		
	Length of belt should be changed,		
	L=(Length of cross belt)-(length of open belt) =7.863-7.76		
	L=0.103 mm2 marks		

Q 6 b) Q 6 b) Q 6 b) Purple band brake shown in figure 2 is applied to a shaft carrying a flywheel of mass 250 kg and of radius of gyration 300 mm. The shaft speed is 200 rpm. The drum diameter is 200 mm and the coefficient of furtion is 0.25. The dimensions a and 1 are 100 mm and 280 mm respectively and the angle $\beta = 1350$. Determine (i) the brake torque when a force of 120 N is applied at the lever end. (ii) the number of turns of the flywheel before it comes to rest. (iii) the time taken by flywheel to come to rest. (iii) the time taken by	Que.No	Question/Problem	marks	Link
Answer: A simple band brake drum: Q 6 b) Image: the state of the state	Queino	Question: A simple band brake shown in figure 2 is applied to a shaft carrying a flywheel of mass 250 kg and of radius of gyration 300 mm. The shaft speed is 200 rpm. The drum diameter is 200 mm and the coefficient of friction is 0.25. The dimensions a and I are 100 mm and 280 mm respectively and the angle $\beta = 1350$. Determine (i) the brake torque when a force of 120 N is applied at the lever end. (ii) the number of turns of the flywheel before it comes to rest. (iii) the time taken by flywheel to come to rest. (iii) the time taken by flywheel to come to rest.	marks	EIIIK
A simple band brake drum:		Fig 2		
9 (6 b) 1 (10) 1 (
Q 6 b) Sol Given: $P = 120 \text{ M}$ P = 200 mm 0.2 m D = 200 mm 0.2 mm D = 200 mm 0.2 mm D = 200 mm 0.2 mm D = 0.2 mm 0.2 mm D = 0.2 mm 0.2 mm A ns: $\frac{T_{1}}{T_{2}} = e^{i\pi} \frac{T_{1}}{T_{2}} = e^{0:2(3\pi)/3} \frac{T_{1}}{T_{2}} = 2.669 \dots 01 \text{ mark}$ $\mu = \frac{T_{1} \times u}{1.20} = \frac{T_{1} \times 0.13}{0.28}$ $T_{1} = 336 \text{ N} \dots 01 \text{ mark}$ $T_{1} = T_{1} \times 2.669$ $T_{1} = 336 \times 2.669 : T_{1} = 896.784 \text{ N} \dots 01 \text{ mark}$ $T_{n} = (T_{1} - T_{1})R_{n} T_{n} = (896.784 + 336).1$ $T_{n} = 56 \text{ Nm} \dots 01 \text{ mark}$ 1) K. E. of Flywheel: $\frac{1}{2} \ln^{2} = \frac{1}{2} \times (250 \times 0.3^{2}) (\frac{2 \times 11 \times 00}{0})^{2}$ $= \frac{1}{2} \times (250 \times 0.3^{2}) (\frac{2 \times 11 \times 200}{0})^{2}$ $= \frac{1}{2} \times (250 \times 0.3^{2}) (\frac{2 \times 11 \times 00}{0})^{2}$ $= \frac{1}{2} \times (250 \times 11 \times N_{m})$ $= (552.288 \times 0) \text{ N.m} \dots 1 \text{ mark}$ $= (552.288 \times 0) \text{ N.m} \dots 1 \text{ mark}$		A simple band brake drum:		
$N = 200 \text{ pm} = 1 = 100 \text{ mm} = 0.1\text{m}$ $D = 200 \text{ mm} = 0.2\text{m}$ $i = 280 \text{ mm} = 0.2\text{m}$ $i = 280 \text{ mm} = 0.2\text{m}$ $i = 280 \text{ mm} = 0.2\text{m}$ $i = 2.50 \text{ mm} = 0.2\text{m}$ $i = 0.2\text{ mm}$ Ans:- $\frac{T}{T_{2}} = e^{as} \frac{T_{1}}{T_{2}} = e^{(a = 3(1 \text{ ss}))} \frac{T_{1}}{T_{2}} = 2.669 \text{ mm} = 0.2\text{ mark}$ $p = \frac{T_{1} X X}{u} = 120 = \frac{T_{1} X 0.1}{0.28}$ $T_{2} = 336 \text{ N} \text{ mm} = 0.1 \text{ mark}$ $T_{2} = 336 \text{ N} \text{ mm} = 0.1 \text{ mark}$ $T_{1} = T_{2} X 2.669$ $T_{1} = 336 X 2.669 ; T_{1} = 896.784 \text{ N} \text{ mm} \text{ mark}$ $T_{3} = (T_{1} - T_{3})R_{1} \text{ T}_{3} = (896.784 \text{ N} \text{ mm} \text{ mark})$ $T_{3} = 56 \text{ Nm} \text{ mm} \text{ mark}$ $1) \text{ K. E. of Flywheel:-}$ $\frac{1}{2} \text{ tw}^{2} \frac{1}{2} \text{ x} (\text{m}^{2}) \left(\frac{211 \text{ N}}{60}\right)^{2}$ $= \frac{1}{2} \text{ x} (250 \text{ x} 0.3^{2}) \left(\frac{2 \times 111 \text{ x} 200}{60}\right)^{2}$ $= \frac{1}{2} \text{ x} 2.55 \text{ x} 438.64 ; \text{ K. E. } = 4934.80 \text{ N. m} \text{ mm} \text{ mark}$ $\text{Let } n = \text{Number of revolution before it comes to rest}$ $\text{Work done } = change in K. E.$	Q6b)	TIX T2	8	view
$\begin{array}{l} \begin{array}{l} \begin{array}{l} D = 200 \text{ mm} = 0.2\text{ mm} \\ \theta = 225^{9} = 3.92 \text{ rad} \\ \mu = 0.25 \end{array} \\ \begin{array}{l} \text{K} = 0.2\text{ mm} \\ \mu = 0.25 \end{array} \\ \begin{array}{l} \text{Ans:} \end{array} \\ \begin{array}{l} \begin{array}{l} \hline T_{1} = e^{\theta = 3(3 \times 9)} \frac{T_{1}}{T_{2}} = 2.669 \\ \hline T_{1} = 336 \text{ N} \\ \hline \end{array} \\ \begin{array}{l} P = \frac{T_{1} \times x}{u} = 120 = \frac{T_{1} \times 0.1}{0.28} \\ T_{2} = 336 \text{ N} \\ \hline \end{array} \\ \begin{array}{l} T_{2} = 336 \text{ N} \\ \hline \end{array} \\ \begin{array}{l} T_{1} = 336 \text{ N} \\ \hline \end{array} \\ \begin{array}{l} T_{1} = T_{1} \times 2.669 \\ T_{1} = 336 \times 2.669 \text{ ; } T_{1} = 896.784 \text{ N} \\ \hline \end{array} \\ \begin{array}{l} T_{1} = 336 \times 2.669 \text{ ; } T_{1} = 896.784 \text{ N} \\ \hline \end{array} \\ \begin{array}{l} T_{1} = 56 \text{ N.m} \\ \hline \end{array} \\ \begin{array}{l} T_{1} = 56 \text{ N.m} \\ \hline \end{array} \\ \begin{array}{l} T_{1} = 2 \text{ N} (\text{ms}^{2}) \left(\frac{211 \text{ N}}{60} \right)^{2} \\ = \frac{1}{2} \text{ X} (250 \times 0.3^{2}) \left(\frac{2 \times 11 \times 2200}{60} \right)^{2} \\ \end{array} \\ \begin{array}{l} = \frac{1}{2} \text{ X} 22.5 \times 438.64 \text{ ; } \text{ K. E} = 4934.80 \text{ N. m} \\ \hline \end{array} \\ \begin{array}{l} \text{Momento} P_{1} \text{ T} \text{ N} P_{1} \\ \hline \end{array} \\ \begin{array}{l} \text{Work done = t, how = T, X 2 \text{ MIN} \\ \end{array} \\ \begin{array}{l} \text{Work done = change in \text{ K. E.} \end{array} \end{array}$				
$\frac{T_{1}}{T_{2}} = e^{xx} \frac{T_{1}}{T_{2}} = e^{(0.23)(x2)} \frac{T_{1}}{T_{2}} = 2.669 - 01 \text{ mark}$ $P = \frac{T_{1} X x}{u} = 120 = \frac{T_{1} X 0.1}{0.28}$ $T_{2} = 336 \text{ N} - 01 \text{ mark}$ $T_{1} = T_{2} X 2.669$ $T_{1} = 336 X 2.669 ; T_{1} = 896.784 \text{ N} - 01 \text{ mark}$ $T_{0} = (T_{1} - T_{2})R_{-} T_{0} = (896.784 - 336)0.1$ $T_{0} = 56 \text{ N.m} - 01 \text{ mark}$ 1) K. E. of Flywheel:- $\frac{1}{2} \text{ I } w^{2} = \frac{1}{2} X (\text{mk}^{2} \sqrt{\frac{2 \Pi \text{ N}}{60}})^{2}$ $= \frac{1}{2} X (250 X 0.3^{2}) \left(\frac{2 X \Pi X 200}{60}\right)^{2}$ $= \frac{1}{2} X 22.5 X 438.64 ; \text{ K. E. } = 4934.80 \text{ N. m} - 02 \text{ mark}$ Let $n = \text{Number of revolution before it comes to rest}$ Work done $= T_{0} X 8 = T_{0} X 2 X \Pi X n$ $= 56.07 X 2 X \Pi X n$ $= 56.07 X 2 X \Pi X n$ $= (352.298 \text{ X n}) \text{ N. m} - 1 \text{ mark}$ Work done $= change in K. E.$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$P = \frac{T, X x}{u} = 120 = \frac{T, X 0.1}{0.28}$ $T_2 = 336 \text{ N} \qquad 01 \text{ mark}$ $T_1 = T_2 X 2.669$ $T_1 = 336 X 2.669 ; T_1 = 896.784 \text{ N} \qquad 01 \text{ mark}$ $T_n = (T_1 - T_2) R_1 \qquad T_n = (896.784 - 336) 0.1$ $T_n = 56 \text{ N.m} \qquad 01 \text{ mark}$ 1) K. E. of Flywheel: $\frac{1}{2} \text{ I o}^2 = \frac{1}{2} X (\text{mk}^2) \left(\frac{211 \text{ N}}{60}\right)^2$ $= \frac{1}{2} X (250 X 0.3^2) \left(\frac{2 X \Pi X 200}{60}\right)^2$ $= \frac{1}{2} X (250 X 0.3^2) \left(\frac{2 X \Pi X 200}{60}\right)^2$ $= \frac{1}{2} X 22.5 X 438.64; K. E. = 4934.80 \text{ N} \text{ m} \qquad 02 \text{ mark}$ Let n = Number of revolution before it comes to rest Work done = T_n X 0 = T_n X 2X \Pi X n $= 56.07 X 2 X \Pi X n$ $= 56.07 X 2 X \Pi X n$ $= (352.298 X n) \text{ N.m} \qquad 1 \text{ mark}$ Work done = change in K. E.				
$T_{2} = 336 \text{ N} - 01 \text{ mark}$ $T_{1} = T_{2} \times 2.669$ $T_{1} = 336 \times 2.669 ; T_{1} = 896.784 \text{ N} - 01 \text{ mark}$ $T_{10} = (T_{1} - T_{2})\text{R}_{2} - T_{10} = (896.784 - 336)0.1$ $T_{10} = 56 \text{ N.m} - 01 \text{ mark}$ 1) K. E. of Flywheel:- $\frac{1}{2} 1 \omega^{2} = \frac{1}{2} \times (\text{mk}^{2}) \left(\frac{2 \Pi \text{ N}}{60}\right)^{2}$ $= \frac{1}{2} \times (250 \times 0.3^{2}) \left(\frac{2 \times \Pi \times 200}{60}\right)^{2}$ $= \frac{1}{2} \times (250 \times 0.3^{2}) \left(\frac{2 \times \Pi \times 200}{60}\right)^{2}$ $= \frac{1}{2} \times 22.5 \times 438.64 ; \text{ K. E. } = 4934.80 \text{ N. m} - 02 \text{ mark}$ Let n = Number of revolution before it comes to rest Work done = T_{1} \times 0 = T_{1} \times 2 \times 1 \Pi \times 1 Work done = change in K. E.		$\frac{I_1}{T_2} = e^{\mu\theta} \frac{I_1}{T_2} = e^{(0.25)(3.92)} \frac{I_1}{T_2} = 2.669$ 01 mark		
$T_{1} = T_{2} \times 2.669$ $T_{1} = 336 \times 2.669 ; T_{1} = 896.784 \text{ N} \dots 01 \text{ mark}$ $T_{m} = (T_{1} - T_{2})\text{R} \qquad T_{m} = (896.784 - 336)0.1$ $T_{m} = 56 \text{ N.m} \dots 01 \text{ mark}$ 1) K. E. of Flywheel:- $\frac{1}{2} I \omega^{2} = \frac{1}{2} \times (\text{mk}^{2}) \left(\frac{2 \Pi \text{ N}}{60}\right)^{2}$ $= \frac{1}{2} \times (250 \times 0.3^{2}) \left(\frac{2 \times \Pi \times 200}{60}\right)^{2}$ $= \frac{1}{2} \times 22.5 \times 438.64; \text{ K. E. = 4934.80 N. m} \dots 02 \text{ mark}$ Let n = Number of revolution before it comes to rest Work done = T_{5} \times 0 = T_{5} \times 2 \times \Pi \times n $= 56.07 \times 2 \times \Pi \times n$ Work done = change in K. E.		$P = \frac{T_2 X x}{u} = 120 = \frac{T_2 X 0.1}{0.28}$		
$T_{i} = 336 \times 2.669 \ ; T_{i} = 896.784 \text{ N} \dots 01 \text{ mark}$ $T_{in} = (T_{i} - T_{2}) \text{R} \qquad T_{in} = (896.784 - 336) 0.1$ $T_{in} = 56 \text{ N.m} \dots 01 \text{ mark}$ 1) K. E. of Flywheel:- $\frac{1}{2} \text{ I } \omega^{2} = \frac{1}{2} \times (\text{nk}^{2}) \left(\frac{2 \Pi \text{ N}}{60}\right)^{2}$ $= \frac{1}{2} \times (250 \times 0.3^{2}) \left(\frac{2 \times \Pi \times 200}{60}\right)^{2}$ $= \frac{1}{2} \times 22.5 \times 438.64; \text{ K. E. = 4934.80 N. m} \dots 02 \text{ mark}$ Let n = Number of revolution before it comes to rest Work done = T_{in} X 0 = T_{in} X 2 \Pi X n $= 56.07 \times 2 \times \Pi X n$ $= (352.298 \times n) \text{ N.m} \dots 1 \text{ mark}$ Work done = change in K. E.		$T_2 = 336 \text{ N}$ 01 mark		
$T_{n} = (T_{1} - T_{2})R_{n} T_{n} = (896.784 - 336)0.1$ $T_{n} = 56 \text{ N.m}_{01 \text{ mark}}$ 1) K. E. of Flywheel:- $\frac{1}{2}I\omega^{2} = \frac{1}{2}X(mk^{2})\left(\frac{2\Pi N}{60}\right)^{2}$ $= \frac{1}{2}X(250 X 0.3^{2})\left(\frac{2X\Pi X 200}{60}\right)^{2}$ $= \frac{1}{2}X(250 X 438.64; \text{ K. E.} = 4934.80 \text{ N. m}_{02 \text{ mark}}$ Let $n = \text{Number of revolution before it comes to rest}$ Work done $= T_{h} X \theta = T_{h} X 2X\Pi X n$ $= 56.07 X 2 X\Pi X n$ $= (352.298 X n) \text{ N.m}_{1 \text{ mark}}$ Work done = change in K. E.				
$T_{B} = 56 \text{ N.m} - 01 \text{ mark}$ 1) K. E. of Flywheel:- $\frac{1}{2} I \omega^{2} = \frac{1}{2} X (mk^{2}) \left(\frac{2 \Pi N}{60}\right)^{2}$ $= \frac{1}{2} X (250 X 0.3^{2}) \left(\frac{2 X \Pi X 200}{60}\right)^{2}$ $= \frac{1}{2} X 22.5 X 438.64 ; K. E. = 4934.80 \text{ N. m} - 02 \text{ mark}$ Let n = Number of revolution before it comes to rest Work done = T_{b} X 0 = T_{b} X 2 X \Pi X n $= 56.07 X 2 X \Pi X n$ $= (352.298 X n) \text{ N.m} - 1 \text{ mark}$ Work done = change in K. E.				
1) K. E. of Flywheel:- $\frac{1}{2} I \omega^2 = \frac{1}{2} X (mk^2) \left(\frac{2 \Pi N}{60}\right)^2$ $= \frac{1}{2} X (250 X 0.3^2) \left(\frac{2 X \Pi X 200}{60}\right)^2$ $= \frac{1}{2} X 22.5 X 438.64; K. E. = 4934.80 N. m$ 02 mark Let n = Number of revolution before it comes to rest Work done = T _b X 0 = T _b X 2 X \Pi X n = 56.07 X 2 X \Pi X n = (352.298 X n) N.m1 mark Work done = change in K. E.				
$\frac{1}{2} I \omega^2 = \frac{1}{2} X (mk^2) \left(\frac{2 \Pi N}{60} \right)^2$ $= \frac{1}{2} X (250 X 0.3^2) \left(\frac{2 X \Pi X 200}{60} \right)^2$ $= \frac{1}{2} X 22.5 X 438.64; K. E. = 4934.80 N. m$ Let n = Number of revolution before it comes to rest Work done = T _b X 0 = T _b X 2 X Π X n = 56.07 X 2 X Π X n = (352.298 X n) N.m_{1} mark Work done = change in K. E.				
$= \frac{1}{2} X (250 \times 0.3^2) \left(\frac{2 \times \Pi \times 200}{60}\right)^2$ $= \frac{1}{2} X 22.5 X 438.64; \text{ K. E.} = 4934.80 \text{ N. m}02 \text{ mark}$ Let n = Number of revolution before it comes to rest Work done = T _b X 0 = T _b X 2 X \Pi X n $= 56.07 X 2 X \Pi X n$ $= (352.298 \times n) \text{ N. m}_{1} \text{ mark}$ Work done = change in K. E.				
$= \frac{1}{2} X 22.5 X 438.64 ; K. E. = 4934.80 N. m$ $= \frac{1}{2} X 22.5 X 438.64 ; K. E. = 4934.80 N. m$ Let n = Number of revolution before it comes to rest Work done = T _b X θ = T _b X 2 X Π X n = 56.07 X 2 X Π X n = (352.298 X n) N. m = (352.298 X n) N. m Work done = change in K. E.				
Let $n = Number of revolution before it comes to rest Work done = T_b X \theta = T_b X 2 X \Pi X n= 56.07 X 2 X \Pi X n= (352.298 X n) N.m1 markWork done = change in K. E.$		2 (00)		
= 56.07 X 2 X II X n = (352.298 X n) N.m1 mark Work done = change in K. E.		Let $n =$ Number of revolution before it comes to rest		
Work done = change in K. E.		$= 56.07 \times 2 \times \Pi \times n$		
$n = \frac{4934.80}{352.298}$; n = 14.0071 mark				

Que.No	Question/Problem	marks	Link
	Question: A conical pivot with angle of cone as 100o, supports a load of 18 kN. The external radius is 2.5 times the internal radius. The shaft rotates at 150 rpm. If the intensity of pressure is to be 300 kN/m2 and coefficient of friction as 0.05, what is the power lost in working against the friction ? Answer:)	
Q6c)	Given data, $2 \alpha = 100^{\circ} \qquad \alpha = 50^{\circ}$ $W = 18 \text{ KN} \qquad P_{\text{max}} = 300 \times 10^{3} \text{ N/m}^{2}$ $\mu = 0.05 \qquad \text{N} = 150 \text{ rpm}$ $R_{1} = 2.5 \text{ R}_{2}$ $W = P \times \Pi (R_{1}^{2} - R_{2}^{3}) - 1 \text{ mark}$ $18 \times 10^{3} = 300 \times 10^{3} (3.142) ((2.5 R_{2})^{2} - (R_{2})^{2}$ $0.019 = 1.5 R_{2}^{2}$ $R_{2} = 0.11 \text{ m} - 1 \text{ mark}$ $R_{1} = 2.5 \times 0.11 ; R_{1} = 0.281 \text{ m} - 1 \text{ mark}$ $R_{1} = 2.5 \times 0.11 ; R_{1} = 0.281 \text{ m} - 2 \text{ marks}$ $\therefore T = \frac{2}{3} \mu W \frac{(R_{1}^{3} - R_{2}^{3})}{(R_{1}^{2} - R_{2}^{2})^{2} \sin \alpha} - 2 \text{ marks}$ $\therefore T = \frac{2}{3} \mu W \frac{(R_{1}^{3} - R_{2}^{3})}{((0.281)^{2} - (0.11)^{2}) \sin 50^{\circ}}$ $T = \frac{16.336}{((0.281)^{2} - (0.11)^{2})}$ $T = 244.33 \text{ N.m} - 1 \text{ mark}$ $P = \frac{2 \Pi \text{ N T}}{60} = \frac{2 \times \Pi \times 150 \times 244.33}{60} = 3.837 \times 10^{3} \text{ Watt} = 3.837 \text{ K Watt}$ Power Lost = 3.837 KW - 2 \text{ marks}	8	view

Examination: 2016 WINTER

Que.No	Question/Problem	marks	Link
Q 5 a)	Question: In a slider crank mechanism the length of crank and connecting rod are 100mm and 40mm respectively. The crank rotates uniformly at 600 rpm clockwise. Then crank has turned through 45° from I.D.C. Find by analytical method. (i) Velocity and acceleration of slider (ii) Angular velocity and angular acceleration of connecting rod. Answer: Radius of crank , r=100 mm = 0.1m speed. N= 600 rpm , ω = 2 π N/60=62.83 rad/sec Length of connecting rod, l=400 mm=0.4m (40 mm is printing mistake) Obliquity ratio, n=l/r =400/100= 4, Crank angle , θ = 45° Velocity of slider Vp= $\omega r(\sin \theta + \frac{\sin 2 \theta}{2n}) = 5.225$ m/s Acceleration of slider fp = $\omega^2 r(\cos \theta + \frac{\cos 2\theta}{n}) = 279.15$ m/s ² Angular velocity of connecting rod $\omega_{pc} = (\omega \cos \theta)/n = 11.107$ rad/sec Angular acceleration of connecting rod $\alpha_{pc} = (-\omega^2 \sin \theta)/n = -697.89$ rad/sec ² [Note- If student has taken l=40, (due to printing mistake in QP) which is practically not possible, but values of answers in that case will be Vp=12.29 m/s ;fp= 279.15 m/s ² ; ω_{pc} =111.07 rad/sec; α_{pc} =6978.86 rad/s ² , which may be acceptable.]	8	view
Q5c)	Question:In a band and block brake shown in Fig. No. 1 has 14 blocks. Each block subtends an angle of 16°, and $\mu = 0.3$. Tension on tight side is T_1 and that on slack side is T_2 when force of 300N is applied at the end of lever, find braking torque and direction of rotation of drum required.Image: Second Seco	8	view

Que.No	Question/Problem	marks	Link
	Question: Determine the power lost in a footstep bearing due to friction if a load of 15 kN is supported and the shaft is rotating at 100 r.p.m. The diameter of bearing is 15cm and coefficient of friction is 0.05. Assume : (i) Uniform wear condition (ii) Uniform pressure condition. Answer:		
	W = 15 KN, N= 100 rpm, Y= 7.5 cm		
	U) Considering Uniform pressure theory		
	Torque, T = 2 HWR N-m		
	= = x 0105 × 15× 103 × 01075		
Q6c)	Power lost, = 37.5 Nm[2M]	8	view
	$P = \frac{2TNT}{60 \times 1000} = 0.393 \text{ KW} [2M]$		
	(ii) Considering Uniform wear theory		
	Torque, T = 1 MWR N-m		
	= 12×0.05× 15×103×0.075		
	= 28.1 N-m[2m]		
	$P = \frac{2 \text{ TNT}}{50 \times 1000} = 0.294 \text{ KW} - [2m]$		

Examination: 2015 SUMMER

Que.No	Question/Problem	marks	Link
	Question: In reciprocating engine the crank is 250 mm long and connecting rod is 1000 mm long. The crank rotate at 150 rpm. Find velocity and acceleration of piston and angular velocity and angular acceleration of connecting rod when the crank makes an angle of 30° to IDC. Use analytical method. Answer: Solution of problem on Reciprocating Engine :		
	Given : r= 250 mm = 0.25 m , l= 1000 mm = 1 m , θ = 30°; N = 150 rpm ω = π × 150 / 60 = 7.85 rad/s		
	1. Velocity of piston		
	We know that ratio of the length of connecting rod and crank,		
	n = l/r = 1/0.25 = 4		
Q 5 a)	$\therefore \text{ Velocity of the slider,} \\ v_{\rm P} = \omega r \left(\sin \theta + \frac{\sin 2\theta}{2n} \right) = 7.85 \times 0.25 \left(\sin 30 + \frac{\sin 60^{\circ}}{2 \times 4} \right) \text{m/s}$	8	<u>view</u>
	= 1.19 m/s Ans.		
	and acceleration of the slider, $a_{\rm p} = \omega^2 r \left(\cos \theta + \frac{\cos 2\theta}{n} \right) = (.7.85)^2 \times 0.25 \left(\cos 30^\circ + \frac{\cos 60^\circ}{4} \right) \text{m/s}^2$ $= 15.27 \text{ m/s}^2 \text{ Ans.}$		
	2. Angular velocity & Angular acceleration of Con Rod		
	We know that angular velocity of the connecting rod,		
	$\omega_{PC} = \frac{\omega \cos \theta}{n} = \frac{.7.85 \times \cos 30^{\circ}}{4} = 1.67 \text{ rad/s Ans.}$ and angular acceleration of the connecting rod,		
	$ \alpha_{\rm PC} = \frac{\omega^2 \sin \theta}{n} = \frac{(7.85)^2 \times \sin 30^\circ}{4} = 7.7 \text{ rad/s}^2 \text{ Ans.} $		

Que.No	Question/Problem	marks	Link
	Question: A belt is required to transmit 10 kW from a motor running at 600 rpm. The belt is 12 mm thick and has a mass density 0.001 gm/mm3 . Safe stress in the belt is not to exceed 2.5 N/mm2 , diameter of the driving pulley is 250 mm whereas the speed of the driven pulley is 200 rpm. The two shafts are 1.25 m apart. The coefficient of friction is 0.25, determine (1) Angle of contact at driving pulley (2) The width of the belt Answer:		
Q 5 c)	P=10×10 ³ W, Ni=600 rpm, di = 2x0 mm = 0.25 m $\lambda = 0.25$, $z = 1.25$ m, $g = 0.001$ gm/mm ³ $\delta = 2.5$ N/mm ² , N ₂ = 200 rpm $\frac{N_{12}}{N_{2}} = \frac{d_{2}}{d_{1}} = \frac{d_{2}}{d_{2}} = 0.375$ m We have, $\sin \alpha = \frac{T_{2}-r_{1}}{z} = \frac{0.375-0.125}{1.25}$ $= \alpha = 11.53^{4}$ $\therefore 2\alpha = 23.07^{6}$ \therefore Angle of Lap $0 = (80 - 2\alpha)$ $= 156.9^{6}$ = 2.73 rad Velocity $V = \frac{Td(N_{1})}{60} = 4.35$ m/sec Power $P = CT_{r}-T_{2} \rightarrow 10$ \therefore $T_{1}-T_{2} = 1275.90 0$ Also, $\frac{T_{1}}{T_{2}} = \frac{40}{e} = \frac{e^{25} x 2.73}{1.25} = 1.9460$ from equ $0 = 0$ Ti = 1313-3 N & $T_{2} = 667$ N Now, $T_{1} = 6xbxt = 2.5 x b x 12$ -5 b = 43.77 mm Note: - If Prob is solved considering m a Tc, give full credit	8	view

Examination: 2015 WINTER

Que.No	Question/Problem	marks	Link
Q5c)	Question: Two parallel shafts whose centre line are 4.8 m apart, are connected by open belt drive. The diameter of larger pulley is 1.5 m and that of smaller pulley 1 m. The initial tension in the belt when stationary is 3 kN. The mass of the belt is 1.5 kg/m length. The coefficient of friction between the belt and pulley is 0.3 Taking centrifugal tension into account, calculate the power transmitted when the smaller pulley rotates at 400 rpm. Answer: We have that velocity of the belt, $\gamma = \frac{\pi d_0 + 2\pi}{60} = \frac{\pi \times 1 \times 400}{60} = 21 \text{m/s}$ and centrifugal tension; $\gamma = \pi \pi^2 = 1.5(21)^2 = 601.5 \text{N}$ $T_c = \pi \pi^2 = 1.5(21)^2 = 601.5 \text{N}$ $T_c = \pi^2 = 1.5(21)^2 = 601.5 \text{N}$ $T_c = \pi \pi^2 = 1.5(21)^2 = 601.5 \text{N}$ $T_c = \pi^2 = 1.5(21)^2 = 1.5(21)^2 = 60.521 \text{ or } \alpha = 3^2$ $T_c = \pi^2 = 1.5(21)^2 = 2.5 \text{ ((n)}$ $T_c = 1.5(21)^2 = 0.505 \text{ or } \frac{T_c}{T_c} = 2.5 \text{ ((n)}$ $T_c = 1.5(21)^2 = 0.505 \text{ or } \frac{T_c}{T_c} = 2.5 \text{ ((n)}$ $T_c = 1.5(21)^2 = 0.505 \text{ or } \frac{T_c}{T_c} = 2.5 \text{ ((n)}$ $T_c = 1.5(21)^2 = 1.5(21)^2 = 0.505 \text{ or } \frac{T_c}{T_c} = 2.5 \text{ ((n)}$ $T_c = 1.5(21)^2 = $	8	view
Q6b)	Question:In a simple band brake, the band acts on the 3/4th of circumference of a drum of 450 mm diameter which is keyed to the shaft. The band brake provides a braking torque of 225 N.m. One end of the band is attached to a fulcrum pin of the lever and the other end to a pin 100 mm from the fulcrum. It the operating force is applied at 500 mm from the fulcrum and the coefficient of friction is 0.25, find the operating force when the drum rotates in the (i) anticlockwise direction and ii) clockwise direction Answer:We know that braking torque (T_{2}). $225 = (T_1 - T_2)r = (T_1 - T_2) 0.225$ \therefore $T_1 - T_2 = 225 / 0.225 = 1000 N$ \therefore $T_1 = 1444 N;$ and $T_2 = 444 N$ Now taking moments about the fulcrum 0, we have $P \times l = T_2 b$ or $P \times 0.5 = 444 \times 0.1 = 44.4$ \therefore $P = 44.4 / 0.5 = 88.8 N Ams.(b) Operating force when drum rotates in clockwise directionR = 1444 \times 0.1 = 144.4 \times 0.1 = 144.4\thereforeP = 44.4 / 0.5 = 88.8 N Ams.(d) then taking moments about the fulcrum 0, we haveP \times l = T_2 b or P \times 0.5 = 1444 \times 0.1 = 144.4\thereforeP = 44.4 / 0.5 = 88.8 N Ams.$	8	view

Que.No	Question/Problem	marks	Link
	Question: A single plate clutch with both sides effective has outer and inner diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the contact surface is not to exceed 0.1 N/mm2. If the coefficient of friction is 0.3, determine the power transmitted by a clutch at a speed of 2500 rpm. Assume uniform condition. Answer: Single Plate Clutch:		
Q 6 c)	Since the intensity of pressure (p) is maximum at the inner radius (r ₂), therefore for uniform wear, $p.r_2 = C$ or $C = 0.1 \times 100 = 10$ N/mm We know that the axial thrust, $W = 2 \pi C (r_1 - r_2) = 2 \pi \times 10 (150 - 100) = 3142$ N and mean radius of the friction surfaces for uniform wear, $R = \frac{r_1 + r_2}{2} = \frac{150 + 100}{2} = 125$ mm = 0.125m We know that torque transmitted, $T = n.\mu.W.R = 2 \times 0.3 \times 3142 \times 0.125 = 235.65$ N-m ($\because n = 2$, for both sides of plate effective) \therefore Power transmitted by a clutch, $P = T.\omega = 235.65 \times 261.8 = 61 693$ W = 61.693 kW Ans.	8	view