Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home >

Subject Code

```
-Any - V
```

Question Type

- Any - \mathbf{V}
marks
- Any - \mathbf{V}

Question Number

- Any - \mathbf{V}

Sub Number

- Any - \mathbf{V}

Apply

Examination: 2017 SUMMER

Question:
In the toggle mechanism as shown in Fig. (2), D is
constrained to move on a horizontal path. The dimensions of various links are $A B=200 \mathrm{~mm}, B C=\mathbf{3 0 0} \mathbf{~ m m}, O C=150 \mathrm{~mm}$ and $B D=450 \mathrm{~mm}$. The crank $O C$ is rotating in a counter clockwise direction at a speed of 180 rpm. Find, for given configuration (1) velocity and (2) acceleration of ' D '.

Fig. 2
Answer:

Q 5 b)

1. Velocity of slider ' D ' = vector $\mathrm{ad}=1.6 \mathrm{~m} / \mathrm{s}$
2. Acceleration of slider ' $D^{\prime}=$ vector $a^{\prime} d^{\prime}=9.0 \mathrm{~m} / \mathrm{s}^{2}$

Examination: 2016 SUMMER

Question:
(a) In a slider crank mechanism shown in figure 1.

Fig. 1
Calculate :
(i) The acceleration of the slider at B
(ii) The acceleration of point E .
(iii) The acceleration of link AB . OA rotates at $20 \mathrm{rad} / \mathrm{sec}$ counter clockwise.
Answer:
space Diagram:-
scale

$$
1 \mathrm{~cm}=240 \mathrm{~mm}
$$

Accelezation Diagram $1 \mathrm{~cm}=40 \times 10^{3} \mathrm{~mm} / \mathrm{sec}$

Calculations:
i) Velocity of crank AO:
$\mathrm{V}_{\mathrm{AO}}=(\mathrm{r} \mathbf{X} \omega) \times(480 \times 20)$
$\mathrm{V}_{10}=9600 \mathrm{~mm} / \mathrm{sec}$
Velocity of connectingrod (AB)
$\mathrm{V}_{A \mathrm{~B}}=1(\mathrm{ab}) \mathrm{X}$ Scale $=1.6 \times 3000$
$\mathrm{V}_{\mathrm{AB}}=4800 \mathrm{~mm} / \mathrm{sec}$
Velocity of Slider :
$\mathrm{V}_{\mathrm{BO}}=1(\mathrm{bo}) \mathrm{X}$ Scale $=3.2 \times 3000$
$\mathrm{V}_{\mathrm{BO}}=9600 \mathrm{~mm} / \mathrm{sec}$
Velocity of Extended link :
$\mathrm{V}_{\mathrm{wE}}=1(\mathrm{be}) \mathrm{X} \mathrm{Scale}=4.5 \times 3000$
$\mathrm{V}_{\mathrm{BD}}=13500 \mathrm{~mm} / \mathrm{sec}$
Now,
Calculations for acceleration Diagram:
$\mathrm{f}^{\mathrm{c}} \mathrm{ox}=\frac{\left(\text { velocity of } \text { crank }^{2}\right)}{\text { length of crank }}=\frac{(9600)^{2}}{480}=192 \times 10^{3} \mathrm{~mm} / \mathrm{sec}$
$\mathrm{f}^{c}{ }^{c}=\frac{\left(\text { (velocity of } \mathrm{rod}^{2}\right)}{\text { lengh of rod }}=\frac{(4800)^{2}}{1600}=14.4 \times 10^{3} \mathrm{~mm} / \mathrm{sec}$
$\mathrm{f}^{\mathrm{c}} \mathrm{se}=\frac{\left(\text { velocity of Extended link }{ }^{2}\right)}{\text { length of crank }}=\frac{(13500)^{2}}{2050}=88.90 \times 10^{3} \mathrm{~mm} / \mathrm{sec}$
To be find:

1. Acceleration of slider:
$\mathrm{a}_{\mathrm{50}}=1(\mathrm{bo}) \mathrm{XS}$ Sale $=1.6 \times 40 \times 10^{3}$
$\mathrm{a}_{\mathrm{bo}}=64 \times 10^{3} \mathrm{~mm} / \mathrm{sec}^{2}$
2. The Acceleration of point \mathbf{E} :
$\mathrm{a}_{2}=1(\mathrm{oe}) \mathrm{XScale}=3.4 \times 40 \times 10^{3}$
$\mathrm{a}_{\mathrm{ec}}=136 \times 10^{3} \mathrm{~mm} / \mathrm{sec}^{2}$
3. Acceleration of link $A B$:
$a_{a b}=I(\mathrm{ab}) \times$ Scale $=4.3 \times 40 \times 10^{3}$
$a_{a b}=172 \times 10 \mathrm{~mm} / \mathrm{sec}^{2}$

Question:
Draw the profile of cam operating a roller reciprocating follower with the following data :
Minimum radius of cam $=25 \mathrm{~mm}$
lift $=\mathbf{3 0} \mathbf{~ m m}$
Roller diameter $=15 \mathrm{~mm}$
The cam lifts the follower for 120° with SHM followed by a dwell period of 30°. Then the follower lowers down during $15 \mathbf{0}^{\circ}$ of the cam rotation with uniform acceleration and deceleration followed by a dwell period.
Answer:
i) Displacement Diagram:
$\mathrm{cm}=30^{\circ}$

ii) cam profile:

Q 5 b)

Examination: 2016 WINTER

Question:
Draw profile of cam to raise the valve with S.H.M. through 5 cm in 120° of revolution, keep it fully raised through 30° and lower it with equal uniform acceleration and retardation through 90° of rotation. The valve remain closed during the rest of rotation. The diameter of the roller is $\mathbf{2 c m}$ and the minimum radius of the cam is 5 cm . The axis of the valve rod is offset 2 cm from the axis of the shaft. Assume the cam rotating in clockwise direction.
Answer:

Q 5 b)

Question:
$P Q R S$ is a four bar chain with link $P S$ fixed. The lengths of links are $P Q=$ $62.5 \mathrm{~mm}, \mathrm{QR}=175 \mathrm{~mm}, \mathrm{RS}=112.5 \mathrm{~mm}$ and $P S=200 \mathrm{~mm}$, The crank $P Q$ rotates at $10 \mathrm{rad} / \mathrm{sec}$ clockwise. Draw velocity and acceleration diagram, when angle QPS $=60^{\circ}$ and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links QR and RS.

Answer:

Q 6 b)
Acceleration digg.

Calculations

$V_{Q P}=\omega \mathrm{T} P \mathrm{XPQ}=10 \times 0.0625=0.625 \mathrm{~m} / \mathrm{s}$
From Velocity diagram,
By measurement, $\mathrm{V}_{\mathrm{RQ}} \pm 0.333 \mathrm{~m} / \mathrm{s}_{\text {; }} ; \omega_{Q R}=\mathrm{V}_{R Q} / R Q=0.333 / 0.175 \boldsymbol{\bullet} 1.9 \mathrm{rad} / \mathrm{s}$ (Anti clockwise)... 1 M
By measurement, $\mathrm{V}_{\text {RS }}=0.426 \mathrm{~m} / \mathrm{s}$,; $\omega_{\text {RS }}=\mathrm{V}_{\text {RS }} / \mathrm{SR} \pm 0.426 / 0.1125 \pm 3.78 \mathrm{rad} / \mathrm{s}$ (clockwise).... 1 M
Find out radial acceleration of each link by using formula $-\mathrm{V}^{2} /$ length of link
Frop $=6.25 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{frgQ}=0.634 \mathrm{~m} / \mathrm{s}^{2} ;$ frgs $=1.613 \mathrm{~m} / \mathrm{s}^{2}$
From acceleration diagram, measure all tangential components (ft)
Angular acceleration of link $\mathrm{QR}, a_{\mathrm{Q} 2}=\mathrm{ft} \mathrm{RQ} / \mathrm{QR}=4.1 / 0.175=23.43 \mathrm{rad} / \mathrm{s}^{2}$ (Anti clockwise)... 1 M
Angular acceleration of link RS, $\alpha_{\text {es }}=\mathrm{ft}$ RS $/ \mathrm{SR}=5.3 / 0.1125=47.1 \mathrm{rad} / \mathrm{s}^{2}$ (Anti clockwise) $\ldots .1 \mathrm{M}$
Examination: 2015 SUMMER

Examination: 2015 WINTER

Que.No	Question/Problem	marks	Link
	Question: A cam is to give the following motion to a knife edged follower : (i) Outstroke during 60° of cam rotation. (ii) Dwell for the next 30° of cam rotation. (iii) Return stroke during next 60° of cam rotation. iv) Dwell for the remaining 210° of cam rotation. The stroke of the follower is $\mathbf{4 0} \mathbf{~ m m}$ and the minimum radius of the cam is 50 mm . The follower moves with uniform velocity during both the outstroke and return stroke. Draw the profile of the cam when the axis of the follower passes through the axis of the camshaft. Answer:		
Q 5 b)	Displacement Diagram	8	view

